面向对象(OOP)基本概念

面向对象编程 —— Object Oriented Programming 简写 OOP

目标

  • 了解 面向对象 基本概念

01. 面向对象基本概念

  • 我们之前学习的编程方式就是 面向过程
  • 面相过程面相对象,是两种不同的 编程方式
  • 对比 面向过程 的特点,可以更好地了解什么是 面向对象

1.1 过程和函数(科普)

  • 过程 是早期的一个编程概念
  • 过程 类似于函数,只能执行,但是没有返回值
  • 函数 不仅能执行,还可以返回结果

1.2 面相过程 和 面相对象 基本概念

1) 面相过程 —— 怎么做

  1. 把完成某一个需求的 所有步骤 从头到尾 逐步实现
  2. 根据开发需求,将某些 功能独立 的代码 封装 成一个又一个 函数
  3. 最后完成的代码,就是顺序地调用 不同的函数

特点

  1. 注重 步骤与过程,不注重职责分工
  2. 如果需求复杂,代码会变得很复杂
  3. 开发复杂项目,没有固定的套路,开发难度很大!

001_面向过程

2) 面向对象 —— 谁来做

相比较函数,面向对象更大封装,根据 职责一个对象中 封装 多个方法

  1. 在完成某一个需求前,首先确定 职责 —— 要做的事情(方法)
  2. 根据 职责 确定不同的 对象,在 对象 内部封装不同的 方法(多个)
  3. 最后完成的代码,就是顺序地让 不同的对象 调用 不同的方法

特点

  1. 注重 对象和职责,不同的对象承担不同的职责
  2. 更加适合应对复杂的需求变化,是专门应对复杂项目开发,提供的固定套路
  3. 需要在面向过程基础上,再学习一些面向对象的语法

001_植物大战僵尸

001_植物大战僵尸类图

类和对象

目标

  • 类和对象的概念
  • 类和对象的关系
  • 类的设计

01. 类和对象的概念

对象面向对象编程的 两个 核心概念

1.1 类

  • 是对一群具有 相同 特征 或者 行为 的事物的一个统称,是抽象的,不能直接使用
    • 特征 被称为 属性
    • 行为 被称为 方法
  • 就相当于制造飞机时的图纸,是一个 模板,是 负责创建对象的

002_飞机设计图纸

1.2 对象

  • 对象由类创建出来的一个具体存在,可以直接使用
  • 哪一个类 创建出来的 对象,就拥有在 哪一个类 中定义的:
    • 属性
    • 方法
  • 对象 就相当于用 图纸 制造 的飞机

在程序开发中,应该 先有类,再有对象

003_飞机对象

02. 类和对象的关系

  • 类是模板对象 是根据 这个模板创建出来的,应该 先有类,再有对象
  • 只有一个,而 对象 可以有很多个
    • 不同的对象 之间 属性 可能会各不相同
  • 中定义了什么 属性和方法对象 中就有什么属性和方法,不可能多,也不可能少

03. 类的设计

在使用面相对象开发前,应该首先分析需求,确定一下,程序中需要包含哪些类!

001_植物大战僵尸类图

在程序开发中,要设计一个类,通常需要满足一下三个要素:

  1. 类名 这类事物的名字,满足大驼峰命名法
  2. 属性 这类事物具有什么样的特征
  3. 方法 这类事物具有什么样的行为

大驼峰命名法

CapWords

  1. 每一个单词的首字母大写
  2. 单词与单词之间没有下划线

3.1 类名的确定

名词提炼法 分析 整个业务流程,出现的 名词,通常就是找到的类

3.2 属性和方法的确定

  • 对象的特征描述,通常可以定义成 属性
  • 对象具有的行为(动词),通常可以定义成 方法

提示:需求中没有涉及的属性或者方法在设计类时,不需要考虑

练习 1

需求

  • 小明 今年 18 岁身高 1.75,每天早上 完步,会去 东西
  • 小美 今年 17 岁身高 1.65,小美不跑步,小美喜欢 东西

002_Person类-w134

练习 2

需求

  • 一只 黄颜色狗狗大黄
  • 看见生人 汪汪叫
  • 看见家人 摇尾巴

003_Dog类-w134

面相对象基础语法

目标

  • dir 内置函数
  • 定义简单的类(只包含方法)
  • 方法中的 self 参数
  • 初始化方法
  • 内置方法和属性

01. dir 内置函数(知道)

  • Python对象几乎是无所不在的,我们之前学习的 变量数据函数 都是对象

Python 中可以使用以下两个方法验证:

  1. 标识符 / 数据 后输入一个 .,然后按下 TAB 键,iPython 会提示该对象能够调用的 方法列表
  2. 使用内置函数 dir 传入 标识符 / 数据,可以查看对象内的 所有属性及方法

提示 __方法名__ 格式的方法是 Python 提供的 内置方法 / 属性,稍后会给大家介绍一些常用的 内置方法 / 属性

序号 方法名 类型 作用
01 __new__ 方法 创建对象时,会被 自动 调用
02 __init__ 方法 对象被初始化时,会被 自动 调用
03 __del__ 方法 对象被从内存中销毁前,会被 自动 调用
04 __str__ 方法 返回对象的描述信息print 函数输出使用

提示 利用好 dir() 函数,在学习时很多内容就不需要死记硬背了

02. 定义简单的类(只包含方法)

面向对象更大封装,在 一个类中 封装 多个方法,这样 通过这个类创建出来的对象,就可以直接调用这些方法了

2.1 定义只包含方法的类

  • Python 中要定义一个只包含方法的类,语法格式如下:
class 类名:

def 方法1(self, 参数列表):
pass

def 方法2(self, 参数列表):
pass
  • 方法 的定义格式和之前学习过的函数 几乎一样
  • 区别在于第一个参数必须是 self,大家暂时先记住,稍后介绍 self

注意:类名 的 命名规则 要符合 大驼峰命名法

2.2 创建对象

  • 当一个类定义完成之后,要使用这个类来创建对象,语法格式如下:
对象变量 = 类名()

2.3 第一个面向对象程序

需求

  • 小猫 鱼,小猫

分析

  1. 定义一个猫类 Cat
  2. 定义两个方法 eatdrink
  3. 按照需求 —— 不需要定义属性

004_Cat类1-w134

class Cat:
"""这是一个猫类"""

def eat(self):
print("小猫爱吃鱼")

def drink(self):
print("小猫在喝水")

tom = Cat()
tom.drink()
tom.eat()

引用概念的强调

在面向对象开发中,引用的概念是同样适用的!

  • Python 中使用类 创建对象之后tom 变量中 仍然记录的是 对象在内存中的地址
  • 也就是 tom 变量 引用新建的猫对象
  • 使用 print 输出 对象变量,默认情况下,是能够输出这个变量 引用的对象由哪一个类创建的对象,以及 在内存中的地址十六进制表示

提示:在计算机中,通常使用 十六进制 表示 内存地址

  • 十进制十六进制 都是用来表达数字的,只是表示的方式不一样
  • 十进制十六进制 的数字之间可以来回转换
  • %d 可以以 10 进制 输出数字
  • %x 可以以 16 进制 输出数字

案例进阶 —— 使用 Cat 类再创建一个对象

lazy_cat = Cat()
lazy_cat.eat()
lazy_cat.drink()

提问:tomlazy_cat 是同一个对象吗?

03. 方法中的 self 参数

3.1 案例改造 —— 给对象增加属性

  • Python 中,要 给对象设置属性,非常的容易,但是不推荐使用
    • 因为:对象属性的封装应该封装在类的内部
  • 只需要在 类的外部的代码 中直接通过 . 设置一个属性即可

注意:这种方式虽然简单,但是不推荐使用!

tom.name = "Tom"
...

lazy_cat.name = "大懒猫"

3.2 使用 self 在方法内部输出每一只猫的名字

哪一个对象 调用的方法,方法内的 self 就是 哪一个对象的引用

  • 在类封装的方法内部,self 就表示 当前调用方法的对象自己
  • 调用方法时,程序员不需要传递 self 参数
  • 在方法内部
    • 可以通过 self. 访问对象的属性
    • 也可以通过 self. 调用其他的对象方法
  • 改造代码如下:
class Cat:

def eat(self):
print("%s 爱吃鱼" % self.name)

tom = Cat()
tom.name = "Tom"
tom.eat()

lazy_cat = Cat()
lazy_cat.name = "大懒猫"
lazy_cat.eat()

005_方法中的self-w625

  • 类的外部,通过 变量名. 访问对象的 属性和方法
  • 类封装的方法中,通过 self. 访问对象的 属性和方法

04. 初始化方法

4.1 之前代码存在的问题 —— 在类的外部给对象增加属性

  • 将案例代码进行调整,先调用方法 再设置属性,观察一下执行效果
tom = Cat()
tom.drink()
tom.eat()
tom.name = "Tom"
print(tom)
  • 程序执行报错如下:
AttributeError: 'Cat' object has no attribute 'name'
属性错误:'Cat' 对象没有 'name' 属性

提示

  • 在日常开发中,不推荐在 类的外部 给对象增加属性
    • 如果在运行时,没有找到属性,程序会报错
  • 对象应该包含有哪些属性,应该 封装在类的内部

4.2 初始化方法

  • 当使用 类名() 创建对象时,会 自动 执行以下操作:
    1. 为对象在内存中 分配空间 —— 创建对象
    2. 为对象的属性 设置初始值 —— 初始化方法(init)
  • 这个 初始化方法 就是 __init__ 方法,__init__ 是对象的内置方法

__init__ 方法是 专门 用来定义一个类 具有哪些属性的方法

Cat 中增加 __init__ 方法,验证该方法在创建对象时会被自动调用

class Cat:
"""这是一个猫类"""

def __init__(self):
print("初始化方法")

4.3 在初始化方法内部定义属性

  • __init__ 方法内部使用 self.属性名 = 属性的初始值 就可以 定义属性
  • 定义属性之后,再使用 Cat 类创建的对象,都会拥有该属性
class Cat:

def __init__(self):

print("这是一个初始化方法")

# 定义用 Cat 类创建的猫对象都有一个 name 的属性
self.name = "Tom"

def eat(self):
print("%s 爱吃鱼" % self.name)

# 使用类名()创建对象的时候,会自动调用初始化方法 __init__
tom = Cat()

tom.eat()

4.4 改造初始化方法 —— 初始化的同时设置初始值

  • 在开发中,如果希望在 创建对象的同时,就设置对象的属性,可以对 __init__ 方法进行 改造
    1. 把希望设置的属性值,定义成 __init__ 方法的参数
    2. 在方法内部使用 self.属性 = 形参 接收外部传递的参数
    3. 在创建对象时,使用 类名(属性1, 属性2...) 调用
class Cat:

def __init__(self, name):
print("初始化方法 %s" % name)
self.name = name
...

tom = Cat("Tom")
...

lazy_cat = Cat("大懒猫")
...

05. 内置方法和属性

序号 方法名 类型 作用
01 __del__ 方法 对象被从内存中销毁前,会被 自动 调用
02 __str__ 方法 返回对象的描述信息print 函数输出使用

5.1 __del__ 方法(知道)

  • Python

    • 当使用 类名() 创建对象时,为对象 分配完空间后,自动 调用 __init__ 方法
    • 当一个 对象被从内存中销毁 前,会 自动 调用 __del__ 方法
  • 应用场景

    • __init__ 改造初始化方法,可以让创建对象更加灵活
    • __del__ 如果希望在对象被销毁前,再做一些事情,可以考虑一下 __del__ 方法
  • 生命周期

    • 一个对象从调用 类名() 创建,生命周期开始
    • 一个对象的 __del__ 方法一旦被调用,生命周期结束
    • 在对象的生命周期内,可以访问对象属性,或者让对象调用方法
class Cat:

def __init__(self, new_name):

self.name = new_name

print("%s 来了" % self.name)

def __del__(self):

print("%s 去了" % self.name)

# tom 是一个全局变量
tom = Cat("Tom")
print(tom.name)

# del 关键字可以删除一个对象
del tom

print("-" * 50)

5.2 __str__ 方法

  • Python 中,使用 print 输出 对象变量,默认情况下,会输出这个变量 引用的对象由哪一个类创建的对象,以及 在内存中的地址十六进制表示
  • 如果在开发中,希望使用 print 输出 对象变量 时,能够打印 自定义的内容,就可以利用 __str__ 这个内置方法了

注意:__str__ 方法必须返回一个字符串

class Cat:

def __init__(self, new_name):

self.name = new_name

print("%s 来了" % self.name)

def __del__(self):

print("%s 去了" % self.name)

def __str__(self):
return "我是小猫:%s" % self.name

tom = Cat("Tom")
print(tom)

面向对象封装案例

目标

  • 封装
  • 小明爱跑步
  • 存放家具

01. 封装

  1. 封装 是面向对象编程的一大特点
  2. 面向对象编程的 第一步 —— 将 属性方法 封装 到一个抽象的
  3. 外界 使用 创建 对象,然后 让对象调用方法
  4. 对象方法的细节 都被 封装类的内部

02. 小明爱跑步

需求

  1. 小明 体重 75.0 公斤
  2. 小明每次 跑步 会减肥 0.5 公斤
  3. 小明每次 吃东西 体重增加 1 公斤

007_小明爱跑步-w328

提示:在 对象的方法内部,是可以 直接访问对象的属性 的!

  • 代码实现:
class Person:
"""人类"""

def __init__(self, name, weight):

self.name = name
self.weight = weight

def __str__(self):

return "我的名字叫 %s 体重 %.2f 公斤" % (self.name, self.weight)

def run(self):
"""跑步"""

print("%s 爱跑步,跑步锻炼身体" % self.name)
self.weight -= 0.5

def eat(self):
"""吃东西"""

print("%s 是吃货,吃完这顿再减肥" % self.name)
self.weight += 1


xiaoming = Person("小明", 75)

xiaoming.run()
xiaoming.eat()
xiaoming.eat()

print(xiaoming)

2.1 小明爱跑步扩展 —— 小美也爱跑步

需求

  1. 小明小美 都爱跑步
  2. 小明 体重 75.0 公斤
  3. 小美 体重 45.0 公斤
  4. 每次 跑步 都会减少 0.5 公斤
  5. 每次 吃东西 都会增加 1 公斤

007_小明爱跑步-w328

提示

  1. 对象的方法内部,是可以 直接访问对象的属性
  2. 同一个类 创建的 多个对象 之间,属性 互不干扰!

001_植物大战僵尸

03. 摆放家具

需求

  1. 房子(House)户型总面积家具名称列表
    • 新房子没有任何的家具
  2. 家具(HouseItem)名字占地面积,其中
    • 席梦思(bed) 占地 4 平米
    • 衣柜(chest) 占地 2 平米
    • 餐桌(table) 占地 1.5 平米
  3. 将以上三件 家具 添加房子
  4. 打印房子时,要求输出:户型总面积剩余面积家具名称列表

008_摆放家具-w723

剩余面积

  1. 在创建房子对象时,定义一个 剩余面积的属性初始值和总面积相等
  2. 当调用 add_item 方法,向房间 添加家具 时,让 剩余面积 -= 家具面积

思考:应该先开发哪一个类?

答案 —— 家具类

  1. 家具简单
  2. 房子要使用到家具,被使用的类,通常应该先开发

3.1 创建家具

class HouseItem:

def __init__(self, name, area):
"""

:param name: 家具名称
:param area: 占地面积
"""
self.name = name
self.area = area

def __str__(self):
return "[%s] 占地面积 %.2f" % (self.name, self.area)


# 1. 创建家具
bed = HouseItem("席梦思", 4)
chest = HouseItem("衣柜", 2)
table = HouseItem("餐桌", 1.5)

print(bed)
print(chest)
print(table)

小结

  1. 创建了一个 家具类,使用到 __init____str__ 两个内置方法
  2. 使用 家具类 创建了 三个家具对象,并且 输出家具信息

3.2 创建房间

class House:

def __init__(self, house_type, area):
"""

:param house_type: 户型
:param area: 总面积
"""
self.house_type = house_type
self.area = area

# 剩余面积默认和总面积一致
self.free_area = area
# 默认没有任何的家具
self.item_list = []

def __str__(self):

# Python 能够自动的将一对括号内部的代码连接在一起
return ("户型:%s\n总面积:%.2f[剩余:%.2f]\n家具:%s"
% (self.house_type, self.area,
self.free_area, self.item_list))

def add_item(self, item):

print("要添加 %s" % item)

...

# 2. 创建房子对象
my_home = House("两室一厅", 60)

my_home.add_item(bed)
my_home.add_item(chest)
my_home.add_item(table)

print(my_home)

小结

  1. 创建了一个 房子类,使用到 __init____str__ 两个内置方法
  2. 准备了一个 add_item 方法 准备添加家具
  3. 使用 房子类 创建了 一个房子对象
  4. 房子对象 调用了三次 add_item 方法,将 三件家具 以实参传递到 add_item 内部

3.3 添加家具

需求

  • 1> 判断 家具的面积 是否 超过剩余面积如果超过,提示不能添加这件家具
  • 2> 将 家具的名称 追加到 家具名称列表
  • 3> 用 房子的剩余面积 - 家具面积
def add_item(self, item):

print("要添加 %s" % item)
# 1. 判断家具面积是否大于剩余面积
if item.area > self.free_area:
print("%s 的面积太大,不能添加到房子中" % item.name)

return

# 2. 将家具的名称追加到名称列表中
self.item_list.append(item.name)

# 3. 计算剩余面积
self.free_area -= item.area

3.4 小结

  • 主程序只负责创建 房子 对象和 家具 对象
  • 房子 对象调用 add_item 方法 将家具添加到房子
  • 面积计算剩余面积家具列表 等处理都被 封装房子类的内部

面向对象封装案例 II

目标

  • 士兵突击案例
  • 身份运算符

封装

  1. 封装 是面向对象编程的一大特点
  2. 面向对象编程的 第一步 —— 将 属性方法 封装 到一个抽象的
  3. 外界 使用 创建 对象,然后 让对象调用方法
  4. 对象方法的细节 都被 封装类的内部

一个对象的 属性 可以是 另外一个类创建的对象

01. 士兵突击

需求

  1. 士兵 许三多 有一把 AK47
  2. 士兵 可以 开火
  3. 能够 发射 子弹
  4. 装填 装填子弹 —— 增加子弹数量

009_士兵突击-w610

1.1 开发枪类

shoot 方法需求

  • 1> 判断是否有子弹,没有子弹无法射击
  • 2> 使用 print 提示射击,并且输出子弹数量
class Gun:

def __init__(self, model):

# 枪的型号
self.model = model
# 子弹数量
self.bullet_count = 0

def add_bullet(self, count):

self.bullet_count += count

def shoot(self):

# 判断是否还有子弹
if self.bullet_count <= 0:
print("没有子弹了...")

return

# 发射一颗子弹
self.bullet_count -= 1

print("%s 发射子弹[%d]..." % (self.model, self.bullet_count))

# 创建枪对象
ak47 = Gun("ak47")
ak47.add_bullet(50)
ak47.shoot()

1.2 开发士兵类

假设:每一个新兵 都 没有枪

定义没有初始值的属性

在定义属性时,如果 不知道设置什么初始值,可以设置为 None

  • None 关键字 表示 什么都没有
  • 表示一个 空对象没有方法和属性,是一个特殊的常量
  • 可以将 None 赋值给任何一个变量

fire 方法需求

  • 1> 判断是否有枪,没有枪没法冲锋
  • 2> 喊一声口号
  • 3> 装填子弹
  • 4> 射击
class Soldier:

def __init__(self, name):

# 姓名
self.name = name
# 枪,士兵初始没有枪 None 关键字表示什么都没有
self.gun = None

def fire(self):

# 1. 判断士兵是否有枪
if self.gun is None:
print("[%s] 还没有枪..." % self.name)

return

# 2. 高喊口号
print("冲啊...[%s]" % self.name)

# 3. 让枪装填子弹
self.gun.add_bullet(50)

# 4. 让枪发射子弹
self.gun.shoot()

小结

  1. 创建了一个 士兵类,使用到 __init__ 内置方法
  2. 在定义属性时,如果 不知道设置什么初始值,可以设置为 None
  3. 封装的 方法内部,还可以让 自己的 使用其他类创建的对象属性 调用已经 封装好的方法

02. 身份运算符

身份运算符用于 比较 两个对象的 内存地址 是否一致 —— 是否是对同一个对象的引用

  • Python 中针对 None 比较时,建议使用 is 判断
运算符 描述 实例
is is 是判断两个标识符是不是引用同一个对象 x is y,类似 id(x) == id(y)
is not is not 是判断两个标识符是不是引用不同对象 x is not y,类似 id(a) != id(b)

is 与 == 区别:

is 用于判断 两个变量 引用对象是否为同一个
== 用于判断 引用变量的值 是否相等

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> b is a
False
>>> b == a
True

私有属性和私有方法

01. 应用场景及定义方式

应用场景

  • 在实际开发中,对象某些属性或方法 可能只希望 在对象的内部被使用,而 不希望在外部被访问到
  • 私有属性 就是 对象 不希望公开的 属性
  • 私有方法 就是 对象 不希望公开的 方法

定义方式

  • 定义属性或方法时,在 属性名或者方法名前 增加 两个下划线,定义的就是 私有 属性或方法

010_私有属性和方法-w265

class Women:

def __init__(self, name):

self.name = name
# 不要问女生的年龄
self.__age = 18

def __secret(self):
print("我的年龄是 %d" % self.__age)


xiaofang = Women("小芳")
# 私有属性,外部不能直接访问
# print(xiaofang.__age)

# 私有方法,外部不能直接调用
# xiaofang.__secret()

02. 伪私有属性和私有方法(科普)

提示:在日常开发中,不要使用这种方式访问对象的 私有属性 或 私有方法

Python 中,并没有 真正意义私有

  • 在给 属性方法 命名时,实际是对 名称 做了一些特殊处理,使得外界无法访问到
  • 处理方式:在 名称 前面加上 _类名 => _类名__名称
# 私有属性,外部不能直接访问到
print(xiaofang._Women__age)

# 私有方法,外部不能直接调用
xiaofang._Women__secret()

继承

目标

  • 单继承
  • 多继承

面向对象三大特性

  1. 封装 根据 职责属性方法 封装 到一个抽象的
  2. 继承 实现代码的重用,相同的代码不需要重复的编写
  3. 多态 不同的对象调用相同的方法,产生不同的执行结果,增加代码的灵活度

01. 单继承

1.1 继承的概念、语法和特点

继承的概念子类 拥有 父类 的所有 方法属性

011_继承对比图示

1) 继承的语法

class 类名(父类名):

pass
  • 子类 继承自 父类,可以直接 享受 父类中已经封装好的方法,不需要再次开发
  • 子类 中应该根据 职责,封装 子类特有的 属性和方法

2) 专业术语

  • Dog 类是 Animal 类的子类Animal 类是 Dog 类的父类Dog 类从 Animal继承
  • Dog 类是 Animal 类的派生类Animal 类是 Dog 类的基类Dog 类从 Animal派生

3) 继承的传递性

  • C 类从 B 类继承,B 类又从 A 类继承
  • 那么 C 类就具有 B 类和 A 类的所有属性和方法

子类 拥有 父类 以及 父类的父类 中封装的所有 属性方法

提问

哮天犬 能够调用 Cat 类中定义的 catch 方法吗?

答案

不能,因为 哮天犬Cat 之间没有 继承 关系

1.2 方法的重写

  • 子类 拥有 父类 的所有 方法属性
  • 子类 继承自 父类,可以直接 享受 父类中已经封装好的方法,不需要再次开发

应用场景

  • 父类 的方法实现不能满足子类需求时,可以对方法进行 重写(override)

012_继承方法的重写-w203

重写 父类方法有两种情况:

  1. 覆盖 父类的方法
  2. 对父类方法进行 扩展

1) 覆盖父类的方法

  • 如果在开发中,父类的方法实现子类的方法实现完全不同
  • 就可以使用 覆盖 的方式,在子类中 重新编写 父类的方法实现

具体的实现方式,就相当于在 子类中 定义了一个 和父类同名的方法并且实现

重写之后,在运行时,只会调用 子类中重写的方法,而不再会调用 父类封装的方法

2) 对父类方法进行 扩展

  • 如果在开发中,子类的方法实现包含 父类的方法实现
    • 父类原本封装的方法实现子类方法的一部分
  • 就可以使用 扩展 的方式
    1. 在子类中 重写 父类的方法
    2. 在需要的位置使用 super().父类方法 来调用父类方法的执行
    3. 代码其他的位置针对子类的需求,编写 子类特有的代码实现
关于 super
  • Pythonsuper 是一个 特殊的类
  • super() 就是使用 super 类创建出来的对象
  • 最常 使用的场景就是在 重写父类方法时,调用 在父类中封装的方法实现
调用父类方法的另外一种方式(知道)

Python 2.x 时,如果需要调用父类的方法,还可以使用以下方式:

父类名.方法(self)
  • 这种方式,目前在 Python 3.x 还支持这种方式
  • 这种方法 不推荐使用,因为一旦 父类发生变化,方法调用位置的 类名 同样需要修改

提示

  • 在开发时,父类名super() 两种方式不要混用
  • 如果使用 当前子类名 调用方法,会形成递归调用,出现死循环

1.3 父类的 私有属性 和 私有方法

  1. 子类对象 不能 在自己的方法内部,直接 访问 父类的 私有属性私有方法
  2. 子类对象 可以通过 父类公有方法 间接 访问到 私有属性私有方法
  • 私有属性、方法 是对象的隐私,不对外公开,外界 以及 子类 都不能直接访问
  • 私有属性、方法 通常用于做一些内部的事情

示例

013_父类的私有属性和私有方法-w220

  • B 的对象不能直接访问 __num2 属性
  • B 的对象不能在 demo 方法内访问 __num2 属性
  • B 的对象可以在 demo 方法内,调用父类的 test 方法
  • 父类的 test 方法内部,能够访问 __num2 属性和 __test 方法

02. 多继承

概念

  • 子类 可以拥有 多个父类,并且具有 所有父类属性方法
  • 例如:孩子 会继承自己 父亲母亲特性

014_多继承-w384

语法

class 子类名(父类名1, 父类名2...)
pass

2.1 多继承的使用注意事项

问题的提出

  • 如果 不同的父类 中存在 同名的方法子类对象 在调用方法时,会调用 哪一个父类中的方法呢?

提示:开发时,应该尽量避免这种容易产生混淆的情况! —— 如果 父类之间 存在 同名的属性或者方法,应该 尽量避免 使用多继承

015_多继承II-w384

Python 中的 MRO —— 方法搜索顺序(知道)

  • Python 中针对 提供了一个 内置属性 __mro__ 可以查看 方法 搜索顺序
  • MRO 是 method resolution order,主要用于 在多继承时判断 方法、属性 的调用 路径
print(C.__mro__)

输出结果

(<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>)
  • 在搜索方法时,是按照 __mro__ 的输出结果 从左至右 的顺序查找的
  • 如果在当前类中 找到方法,就直接执行,不再搜索
  • 如果 没有找到,就查找下一个类 中是否有对应的方法,如果找到,就直接执行,不再搜索
  • 如果找到最后一个类,还没有找到方法,程序报错

2.2 新式类与旧式(经典)类

objectPython 为所有对象提供的 基类,提供有一些内置的属性和方法,可以使用 dir 函数查看

  • 新式类:以 object 为基类的类,推荐使用

  • 经典类:不以 object 为基类的类,不推荐使用

  • Python 3.x 中定义类时,如果没有指定父类,会 默认使用 object 作为该类的 基类 —— Python 3.x 中定义的类都是 新式类

  • Python 2.x 中定义类时,如果没有指定父类,则不会以 object 作为 基类

新式类经典类 在多继承时 —— 会影响到方法的搜索顺序

为了保证编写的代码能够同时在 Python 2.xPython 3.x 运行!
今后在定义类时,如果没有父类,建议统一继承自 object

class 类名(object):
pass

多态

目标

  • 多态

面向对象三大特性

  1. 封装 根据 职责属性方法 封装 到一个抽象的

    • 定义类的准则
  2. 继承 实现代码的重用,相同的代码不需要重复的编写

    • 设计类的技巧
    • 子类针对自己特有的需求,编写特定的代码
  3. 多态 不同的 子类对象 调用相同的 父类方法,产生不同的执行结果

    • 多态 可以 增加代码的灵活度
    • 继承重写父类方法 为前提
    • 是调用方法的技巧,不会影响到类的内部设计

    016_多态示意图-w384

多态案例演练

需求

  1. Dog 类中封装方法 game
    • 普通狗只是简单的玩耍
  2. 定义 XiaoTianDog 继承自 Dog,并且重写 game 方法
    • 哮天犬需要在天上玩耍
  3. 定义 Person 类,并且封装一个 和狗玩 的方法
    • 在方法内部,直接让 狗对象 调用 game 方法

016_多态-w701

案例小结

  • Person 类中只需要让 狗对象 调用 game 方法,而不关心具体是 什么狗
    • game 方法是在 Dog 父类中定义的
  • 在程序执行时,传入不同的 狗对象 实参,就会产生不同的执行效果

多态 更容易编写出出通用的代码,做出通用的编程,以适应需求的不断变化!

class Dog(object):

def __init__(self, name):
self.name = name

def game(self):
print("%s 蹦蹦跳跳的玩耍..." % self.name)


class XiaoTianDog(Dog):

def game(self):
print("%s 飞到天上去玩耍..." % self.name)


class Person(object):

def __init__(self, name):
self.name = name

def game_with_dog(self, dog):

print("%s 和 %s 快乐的玩耍..." % (self.name, dog.name))

# 让狗玩耍
dog.game()


# 1. 创建一个狗对象
# wangcai = Dog("旺财")
wangcai = XiaoTianDog("飞天旺财")

# 2. 创建一个小明对象
xiaoming = Person("小明")

# 3. 让小明调用和狗玩的方法
xiaoming.game_with_dog(wangcai)

类属性和类方法

目标

  • 类的结构
  • 类属性和实例属性
  • 类方法和静态方法

01. 类的结构

1.1 术语 —— 实例

  1. 使用面相对象开发,第 1 步 是设计
  2. 使用 类名() 创建对象,创建对象 的动作有两步:
      1. 在内存中为对象 分配空间
      1. 调用初始化方法 __init__对象初始化
  3. 对象创建后,内存 中就有了一个对象的 实实在在 的存在 —— 实例

017_类的结构示意图I-w473

因此,通常也会把:

  1. 创建出来的 对象 叫做 实例
  2. 创建对象的 动作 叫做 实例化
  3. 对象的属性 叫做 实例属性
  4. 对象调用的方法 叫做 实例方法

在程序执行时:

  1. 对象各自拥有自己的 实例属性
  2. 调用对象方法,可以通过 self.
    • 访问自己的属性
    • 调用自己的方法

结论

  • 每一个对象 都有自己 独立的内存空间保存各自不同的属性
  • 多个对象的方法在内存中只有一份,在调用方法时,需要把对象的引用 传递到方法内部

1.2 类是一个特殊的对象

Python一切皆对象

  • class AAA: 定义的类属于 类对象
  • obj1 = AAA() 属于 实例对象
  • 在程序运行时, 同样 会被加载到内存
  • Python 中, 是一个特殊的对象 —— 类对象
  • 在程序运行时,类对象 在内存中 只有一份,使用 一个类 可以创建出 很多个对象实例
  • 除了封装 实例属性方法外,类对象 还可以拥有自己的 属性方法
    1. 类属性
    2. 类方法
  • 通过 类名. 的方式可以 访问类的属性 或者 调用类的方法

017_类的结构示意图II-w545

02. 类属性和实例属性

2.1 概念和使用

  • 类属性 就是给 类对象 中定义的 属性
  • 通常用来记录 与这个类相关 的特征
  • 类属性 不会用于记录 具体对象的特征

示例需求

  • 定义一个 工具类
  • 每件工具都有自己的 name
  • 需求 —— 知道使用这个类,创建了多少个工具对象?

018_类属性案例I-w263

class Tool(object):

# 使用赋值语句,定义类属性,记录创建工具对象的总数
count = 0

def __init__(self, name):
self.name = name

# 针对类属性做一个计数+1
Tool.count += 1


# 创建工具对象
tool1 = Tool("斧头")
tool2 = Tool("榔头")
tool3 = Tool("铁锹")

# 知道使用 Tool 类到底创建了多少个对象?
print("现在创建了 %d 个工具" % Tool.count)

2.2 属性的获取机制(科普)

  • Python属性的获取 存在一个 向上查找机制

019_通过对象访问类属性-w779

  • 因此,要访问类属性有两种方式:
    1. 类名.类属性
    2. 对象.类属性 (不推荐)

注意

  • 如果使用 对象.类属性 = 值 赋值语句,只会 给对象添加一个属性,而不会影响到 类属性的值

03. 类方法和静态方法

3.1 类方法

  • 类属性 就是针对 类对象 定义的属性
    • 使用 赋值语句class 关键字下方可以定义 类属性
    • 类属性 用于记录 与这个类相关 的特征
  • 类方法 就是针对 类对象 定义的方法
    • 类方法 内部可以直接访问 类属性 或者调用其他的 类方法

语法如下

@classmethod
def 类方法名(cls):
pass
  • 类方法需要用 修饰器 @classmethod 来标识,告诉解释器这是一个类方法
  • 类方法的 第一个参数 应该是 cls
    • 哪一个类 调用的方法,方法内的 cls 就是 哪一个类的引用
    • 这个参数和 实例方法 的第一个参数是 self 类似
    • 提示 使用其他名称也可以,不过习惯使用 cls
  1. 通过 类名. 调用 类方法调用方法时,不需要传递 cls 参数
  2. 在方法内部
    • 可以通过 cls. 访问类的属性
    • 也可以通过 cls. 调用其他的类方法

示例需求

  • 定义一个 工具类
  • 每件工具都有自己的 name
  • 需求 —— 在 封装一个 show_tool_count 的类方法,输出使用当前这个类,创建的对象个数

020_类方法案例-w263

@classmethod
def show_tool_count(cls):
"""显示工具对象的总数"""
print("工具对象的总数 %d" % cls.count)

在类方法内部,可以直接使用 cls 访问 类属性 或者 调用类方法

3.2 静态方法

  • 在开发时,如果需要在 中封装一个方法,这个方法:

    • 不需要 访问 实例属性 或者调用 实例方法
    • 不需要 访问 类属性 或者调用 类方法
  • 这个时候,可以把这个方法封装成一个 静态方法

语法如下

@staticmethod
def 静态方法名():
pass
  • 静态方法 需要用 修饰器 @staticmethod 来标识,告诉解释器这是一个静态方法
  • 通过 类名. 调用 静态方法
class Dog(object):

# 狗对象计数
dog_count = 0

@staticmethod
def run():

# 不需要访问实例属性也不需要访问类属性的方法
print("狗在跑...")

def __init__(self, name):
self.name = name

3.3 方法综合案例

需求

  1. 设计一个 Game
  2. 属性:
    • 定义一个 类属性 top_score 记录游戏的 历史最高分
    • 定义一个 实例属性 player_name 记录 当前游戏的玩家姓名
  3. 方法:
    • 静态方法 show_help 显示游戏帮助信息
    • 类方法 show_top_score 显示历史最高分
    • 实例方法 start_game 开始当前玩家的游戏
  4. 主程序步骤
      1. 查看帮助信息
      1. 查看历史最高分
      1. 创建游戏对象,开始游戏

021_方法综合案例-w351

案例小结

  1. 实例方法 —— 方法内部需要访问 实例属性
    • 实例方法 内部可以使用 类名. 访问类属性
  2. 类方法 —— 方法内部 需要访问 类属性
  3. 静态方法 —— 方法内部,不需要访问 实例属性类属性

提问

如果方法内部 即需要访问 实例属性,又需要访问 类属性,应该定义成什么方法?

答案

  • 应该定义 实例方法
  • 因为,类只有一个,在 实例方法 内部可以使用 类名. 访问类属性
class Game(object):

# 游戏最高分,类属性
top_score = 0

@staticmethod
def show_help():
print("帮助信息:让僵尸走进房间")

@classmethod
def show_top_score(cls):
print("游戏最高分是 %d" % cls.top_score)

def __init__(self, player_name):
self.player_name = player_name

def start_game(self):
print("[%s] 开始游戏..." % self.player_name)

# 使用类名.修改历史最高分
Game.top_score = 999

# 1. 查看游戏帮助
Game.show_help()

# 2. 查看游戏最高分
Game.show_top_score()

# 3. 创建游戏对象,开始游戏
game = Game("小明")

game.start_game()

# 4. 游戏结束,查看游戏最高分
Game.show_top_score()

单例

目标

  • 单例设计模式
  • __new__ 方法
  • Python 中的单例

01. 单例设计模式

  • 设计模式

    • 设计模式前人工作的总结和提炼,通常,被人们广泛流传的设计模式都是针对 某一特定问题 的成熟的解决方案
    • 使用 设计模式 是为了可重用代码、让代码更容易被他人理解、保证代码可靠性
  • 单例设计模式

    • 目的 —— 让 创建的对象,在系统中 只有 唯一的一个实例
    • 每一次执行 类名() 返回的对象,内存地址是相同的

单例设计模式的应用场景

  • 音乐播放 对象
  • 回收站 对象
  • 打印机 对象
  • ……

02. __new__ 方法

  • 使用 类名() 创建对象时,Python 的解释器 首先 会 调用 __new__ 方法为对象 分配空间
  • __new__ 是一个 由 object 基类提供的 内置的静态方法,主要作用有两个:
      1. 在内存中为对象 分配空间
      1. 返回 对象的引用
  • Python 的解释器获得对象的 引用 后,将引用作为 第一个参数,传递给 __init__ 方法

重写 __new__ 方法 的代码非常固定!

  • 重写 __new__ 方法 一定要 return super().__new__(cls)
  • 否则 Python 的解释器 得不到 分配了空间的 对象引用就不会调用对象的初始化方法
  • 注意:__new__ 是一个静态方法,在调用时需要 主动传递 cls 参数

022_对象分配空间和初始化-w838

示例代码

class MusicPlayer(object):

def __new__(cls, *args, **kwargs):
# 如果不返回任何结果,
return super().__new__(cls)

def __init__(self):
print("初始化音乐播放对象")

player = MusicPlayer()

print(player)

03. Python 中的单例

  • 单例 —— 让 创建的对象,在系统中 只有 唯一的一个实例
    1. 定义一个 类属性,初始值是 None,用于记录 单例对象的引用
    2. 重写 __new__ 方法
    3. 如果 类属性 is None,调用父类方法分配空间,并在类属性中记录结果
    4. 返回 类属性 中记录的 对象引用

023_单例流程-w893

class MusicPlayer(object):

# 定义类属性记录单例对象引用
instance = None

def __new__(cls, *args, **kwargs):

# 1. 判断类属性是否已经被赋值
if cls.instance is None:
cls.instance = super().__new__(cls)

# 2. 返回类属性的单例引用
return cls.instance

只执行一次初始化工作

  • 在每次使用 类名() 创建对象时,Python 的解释器都会自动调用两个方法:
    • __new__ 分配空间
    • __init__ 对象初始化
  • 在上一小节对 __new__ 方法改造之后,每次都会得到 第一次被创建对象的引用
  • 但是:初始化方法还会被再次调用

需求

  • 初始化动作 只被 执行一次

解决办法

  1. 定义一个类属性 init_flag 标记是否 执行过初始化动作,初始值为 False
  2. __init__ 方法中,判断 init_flag,如果为 False 就执行初始化动作
  3. 然后将 init_flag 设置为 True
  4. 这样,再次 自动 调用 __init__ 方法时,初始化动作就不会被再次执行
class MusicPlayer(object):

# 记录第一个被创建对象的引用
instance = None
# 记录是否执行过初始化动作
init_flag = False

def __new__(cls, *args, **kwargs):

# 1. 判断类属性是否是空对象
if cls.instance is None:
# 2. 调用父类的方法,为第一个对象分配空间
cls.instance = super().__new__(cls)

# 3. 返回类属性保存的对象引用
return cls.instance

def __init__(self):

if not MusicPlayer.init_flag:
print("初始化音乐播放器")

MusicPlayer.init_flag = True


# 创建多个对象
player1 = MusicPlayer()
print(player1)

player2 = MusicPlayer()
print(player2)

异常

目标

  • 异常的概念
  • 捕获异常
  • 异常的传递
  • 抛出异常

01. 异常的概念

  • 程序在运行时,如果 Python 解释器 遇到 到一个错误,会停止程序的执行,并且提示一些错误信息,这就是 异常
  • 程序停止执行并且提示错误信息 这个动作,我们通常称之为:抛出(raise)异常

001_异常示意图-w480/Python入门资料/Python入门教程完整版(懂中文就能学会)资料/03 面向对象资料/课程讲义/day03_markdown/day03/media/14989636063700/001_异常示意图.png)

程序开发时,很难将 所有的特殊情况 都处理的面面俱到,通过 异常捕获 可以针对突发事件做集中的处理,从而保证程序的 稳定性和健壮性

02. 捕获异常

2.1 简单的捕获异常语法

  • 在程序开发中,如果 对某些代码的执行不能确定是否正确,可以增加 try(尝试)捕获异常
  • 捕获异常最简单的语法格式:
try:
尝试执行的代码
except:
出现错误的处理
  • try 尝试,下方编写要尝试代码,不确定是否能够正常执行的代码
  • except 如果不是,下方编写尝试失败的代码

简单异常捕获演练 —— 要求用户输入整数

try:
# 提示用户输入一个数字
num = int(input("请输入数字:"))
except:
print("请输入正确的数字")

2.2 错误类型捕获

  • 在程序执行时,可能会遇到 不同类型的异常,并且需要 针对不同类型的异常,做出不同的响应,这个时候,就需要捕获错误类型了

  • 语法如下:

try:
# 尝试执行的代码
pass
except 错误类型1:
# 针对错误类型1,对应的代码处理
pass
except (错误类型2, 错误类型3):
# 针对错误类型2 和 3,对应的代码处理
pass
except Exception as result:
print("未知错误 %s" % result)
  • Python 解释器 抛出异常 时,最后一行错误信息的第一个单词,就是错误类型

异常类型捕获演练 —— 要求用户输入整数

需求

  1. 提示用户输入一个整数
  2. 使用 8 除以用户输入的整数并且输出
try:
num = int(input("请输入整数:"))
result = 8 / num
print(result)
except ValueError:
print("请输入正确的整数")
except ZeroDivisionError:
print("除 0 错误")

捕获未知错误

  • 在开发时,要预判到所有可能出现的错误,还是有一定难度的
  • 如果希望程序 无论出现任何错误,都不会因为 Python 解释器 抛出异常而被终止,可以再增加一个 except

语法如下:

except Exception as result:
print("未知错误 %s" % result)

2.3 异常捕获完整语法

  • 在实际开发中,为了能够处理复杂的异常情况,完整的异常语法如下:

提示:

  • 有关完整语法的应用场景,在后续学习中,结合实际的案例会更好理解
  • 现在先对这个语法结构有个印象即可
try:
# 尝试执行的代码
pass
except 错误类型1:
# 针对错误类型1,对应的代码处理
pass
except 错误类型2:
# 针对错误类型2,对应的代码处理
pass
except (错误类型3, 错误类型4):
# 针对错误类型3 和 4,对应的代码处理
pass
except Exception as result:
# 打印错误信息
print(result)
else:
# 没有异常才会执行的代码
pass
finally:
# 无论是否有异常,都会执行的代码
print("无论是否有异常,都会执行的代码")
  • else 只有在没有异常时才会执行的代码

  • finally 无论是否有异常,都会执行的代码

  • 之前一个演练的 完整捕获异常 的代码如下:

try:
num = int(input("请输入整数:"))
result = 8 / num
print(result)
except ValueError:
print("请输入正确的整数")
except ZeroDivisionError:
print("除 0 错误")
except Exception as result:
print("未知错误 %s" % result)
else:
print("正常执行")
finally:
print("执行完成,但是不保证正确")

03. 异常的传递

  • 异常的传递 —— 当 函数/方法 执行 出现异常,会 将异常传递 给 函数/方法 的 调用一方
  • 如果 传递到主程序,仍然 没有异常处理,程序才会被终止

提示

  • 在开发中,可以在主函数中增加 异常捕获
  • 而在主函数中调用的其他函数,只要出现异常,都会传递到主函数的 异常捕获
  • 这样就不需要在代码中,增加大量的 异常捕获,能够保证代码的整洁

需求

  1. 定义函数 demo1() 提示用户输入一个整数并且返回
  2. 定义函数 demo2() 调用 demo1()
  3. 在主程序中调用 demo2()
def demo1():
return int(input("请输入一个整数:"))


def demo2():
return demo1()

try:
print(demo2())
except ValueError:
print("请输入正确的整数")
except Exception as result:
print("未知错误 %s" % result)

04. 抛出 raise 异常

4.1 应用场景

  • 在开发中,除了 代码执行出错 Python 解释器会 抛出 异常之外
  • 还可以根据 应用程序 特有的业务需求 主动抛出异常

示例

  • 提示用户 输入密码,如果 长度少于 8,抛出 异常

024_自定义异常-w822

注意

  • 当前函数 只负责 提示用户输入密码,如果 密码长度不正确,需要其他的函数进行额外处理
  • 因此可以 抛出异常,由其他需要处理的函数 捕获异常

4.2 抛出异常

  • Python 中提供了一个 Exception 异常类
  • 在开发时,如果满足 特定业务需求时,希望 抛出异常,可以:
    1. 创建 一个 Exception对象
    2. 使用 raise 关键字 抛出 异常对象

需求

  • 定义 input_password 函数,提示用户输入密码
  • 如果用户输入长度 < 8,抛出异常
  • 如果用户输入长度 >=8,返回输入的密码
def input_password():

# 1. 提示用户输入密码
pwd = input("请输入密码:")

# 2. 判断密码长度,如果长度 >= 8,返回用户输入的密码
if len(pwd) >= 8:
return pwd

# 3. 密码长度不够,需要抛出异常
# 1> 创建异常对象 - 使用异常的错误信息字符串作为参数
ex = Exception("密码长度不够")

# 2> 抛出异常对象
raise ex


try:
user_pwd = input_password()
print(user_pwd)
except Exception as result:
print("发现错误:%s" % result)

模块和包

目标

  • 模块
  • 发布模块

01. 模块

1.1 模块的概念

模块是 Python 程序架构的一个核心概念

  • 每一个以扩展名 py 结尾的 Python 源代码文件都是一个 模块
  • 模块名 同样也是一个 标识符,需要符合标识符的命名规则
  • 在模块中定义的 全局变量函数 都是提供给外界直接使用的 工具
  • 模块 就好比是 工具包,要想使用这个工具包中的工具,就需要先 导入 这个模块

1.2 模块的两种导入方式

1)import 导入

import 模块名1, 模块名2 

提示:在导入模块时,每个导入应该独占一行

import 模块名1
import 模块名2
  • 导入之后
    • 通过 模块名. 使用 模块提供的工具 —— 全局变量函数
使用 as 指定模块的别名

如果模块的名字太长,可以使用 as 指定模块的名称,以方便在代码中的使用

import 模块名1 as 模块别名

注意:模块别名 应该符合 大驼峰命名法

2)from…import 导入

  • 如果希望 从某一个模块 中,导入 部分 工具,就可以使用 from ... import 的方式
  • import 模块名一次性 把模块中 所有工具全部导入,并且通过 模块名/别名 访问
# 从 模块 导入 某一个工具
from 模块名1 import 工具名
  • 导入之后
    • 不需要 通过 模块名.
    • 可以直接使用 模块提供的工具 —— 全局变量函数

注意

如果 两个模块,存在 同名的函数,那么 后导入模块的函数,会 覆盖掉先导入的函数

  • 开发时 import 代码应该统一写在 代码的顶部,更容易及时发现冲突
  • 一旦发现冲突,可以使用 as 关键字 给其中一个工具起一个别名
from…import *(知道)
# 从 模块 导入 所有工具
from 模块名1 import *

注意

这种方式不推荐使用,因为函数重名并没有任何的提示,出现问题不好排查

1.3 模块的搜索顺序[扩展]

Python 的解释器在 导入模块 时,会:

  1. 搜索 当前目录 指定模块名的文件,如果有就直接导入
  2. 如果没有,再搜索 系统目录

在开发时,给文件起名,不要和 系统的模块文件 重名

Python 中每一个模块都有一个内置属性 __file__ 可以 查看模块完整路径

示例

import random

# 生成一个 0~10 的数字
rand = random.randint(0, 10)

print(rand)

注意:如果当前目录下,存在一个 random.py 的文件,程序就无法正常执行了!

  • 这个时候,Python 的解释器会 加载当前目录 下的 random.py 而不会加载 系统的 random 模块

1.4 原则 —— 每一个文件都应该是可以被导入的

  • 一个 独立的 Python 文件 就是一个 模块
  • 在导入文件时,文件中 所有没有任何缩进的代码 都会被执行一遍!

实际开发场景

  • 在实际开发中,每一个模块都是独立开发的,大多都有专人负责
  • 开发人员 通常会在 模块下方 增加一些测试代码
    • 仅在模块内使用,而被导入到其他文件中不需要执行

__name__ 属性

  • __name__ 属性可以做到,测试模块的代码 只在测试情况下被运行,而在 被导入时不会被执行
  • __name__Python 的一个内置属性,记录着一个 字符串
  • 如果 是被其他文件导入的__name__ 就是 模块名
  • 如果 是当前执行的程序 __name____main__

在很多 Python 文件中都会看到以下格式的代码

# 导入模块
# 定义全局变量
# 定义类
# 定义函数

# 在代码的最下方
def main():
# ...
pass

# 根据 __name__ 判断是否执行下方代码
if __name__ == "__main__":
main()

02. 包(Package)

概念

  • 是一个 包含多个模块特殊目录
  • 目录下有一个 特殊的文件 __init__.py
  • 包名的 命名方式 和变量名一致,小写字母 + _

好处

  • 使用 import 包名 可以一次性导入 所有的模块

案例演练

  1. 新建一个 hm_message
  2. 在目录下,新建两个文件 send_messagereceive_message
  3. send_message 文件中定义一个 send 函数
  4. receive_message 文件中定义一个 receive 函数
  5. 在外部直接导入 hm_message 的包

__init__.py

  • 要在外界使用 中的模块,需要在 __init__.py 中指定 对外界提供的模块列表
# 从 当前目录 导入 模块列表
from . import send_message
from . import receive_message

03. 发布模块(知道)

  • 如果希望自己开发的模块,分享 给其他人,可以按照以下步骤操作

3.1 制作发布压缩包步骤

1) 创建 setup.py

  • setup.py 的文件
from distutils.core import setup

setup(name="hm_message", # 包名
version="1.0", # 版本
description="itheima's 发送和接收消息模块", # 描述信息
long_description="完整的发送和接收消息模块", # 完整描述信息
author="itheima", # 作者
author_email="itheima@itheima.com", # 作者邮箱
url="www.itheima.com", # 主页
py_modules=["hm_message.send_message",
"hm_message.receive_message"])

有关字典参数的详细信息,可以参阅官方网站:

https://docs.python.org/2/distutils/apiref.html

2) 构建模块

$ python3 setup.py build

3) 生成发布压缩包

$ python3 setup.py sdist

注意:要制作哪个版本的模块,就使用哪个版本的解释器执行!

3.2 安装模块

$ tar -zxvf hm_message-1.0.tar.gz 

$ sudo python3 setup.py install

卸载模块

直接从安装目录下,把安装模块的 目录 删除就可以

$ cd /usr/local/lib/python3.5/dist-packages/
$ sudo rm -r hm_message*

3.3 pip 安装第三方模块

  • 第三方模块 通常是指由 知名的第三方团队 开发的 并且被 程序员广泛使用Python 包 / 模块
    • 例如 pygame 就是一套非常成熟的 游戏开发模块
  • pip 是一个现代的,通用的 Python 包管理工具
  • 提供了对 Python 包的查找、下载、安装、卸载等功能

安装和卸载命令如下:

# 将模块安装到 Python 2.x 环境
$ sudo pip install pygame
$ sudo pip uninstall pygame

# 将模块安装到 Python 3.x 环境
$ sudo pip3 install pygame
$ sudo pip3 uninstall pygame

Mac 下安装 iPython

$ sudo pip install ipython

Linux 下安装 iPython

$ sudo apt install ipython
$ sudo apt install ipython3

文件

目标

  • 文件的概念
  • 文件的基本操作
  • 文件/文件夹的常用操作
  • 文本文件的编码方式

01. 文件的概念

1.1 文件的概念和作用

  • 计算机的 文件,就是存储在某种 长期储存设备 上的一段 数据
  • 长期存储设备包括:硬盘、U 盘、移动硬盘、光盘…

文件的作用

将数据长期保存下来,在需要的时候使用

CPU 内存 硬盘

1.2 文件的存储方式

  • 在计算机中,文件是以 二进制 的方式保存在磁盘上的

文本文件和二进制文件

  • 文本文件

    • 可以使用 文本编辑软件 查看
    • 本质上还是二进制文件
    • 例如:python 的源程序
  • 二进制文件

    • 保存的内容 不是给人直接阅读的,而是 提供给其他软件使用的
    • 例如:图片文件、音频文件、视频文件等等
    • 二进制文件不能使用 文本编辑软件 查看

02. 文件的基本操作

2.1 操作文件的套路

计算机 中要操作文件的套路非常固定,一共包含三个步骤

  1. 打开文件
  2. 读、写文件
    • 将文件内容读入内存
    • 将内存内容写入文件
  3. 关闭文件

2.2 操作文件的函数/方法

  • Python 中要操作文件需要记住 1 个函数和 3 个方法
序号 函数/方法 说明
01 open 打开文件,并且返回文件操作对象
02 read 将文件内容读取到内存
03 write 将指定内容写入文件
04 close 关闭文件
  • open 函数负责打开文件,并且返回文件对象
  • read/write/close 三个方法都需要通过 文件对象 来调用

2.3 read 方法 —— 读取文件

  • open 函数的第一个参数是要打开的文件名(文件名区分大小写)
    • 如果文件 存在,返回 文件操作对象
    • 如果文件 不存在,会 抛出异常
  • read 方法可以一次性 读入返回 文件的 所有内容
  • close 方法负责 关闭文件
    • 如果 忘记关闭文件会造成系统资源消耗,而且会影响到后续对文件的访问
  • 注意read 方法执行后,会把 文件指针 移动到 文件的末尾
# 1. 打开 - 文件名需要注意大小写
file = open("README")

# 2. 读取
text = file.read()
print(text)

# 3. 关闭
file.close()

提示

  • 在开发中,通常会先编写 打开关闭 的代码,再编写中间针对文件的 读/写 操作!

文件指针(知道)

  • 文件指针 标记 从哪个位置开始读取数据
  • 第一次打开 文件时,通常 文件指针会指向文件的开始位置
  • 当执行了 read 方法后,文件指针 会移动到 读取内容的末尾
    • 默认情况下会移动到 文件末尾

思考

  • 如果执行了一次 read 方法,读取了所有内容,那么再次调用 read 方法,还能够获得到内容吗?

答案

  • 不能
  • 第一次读取之后,文件指针移动到了文件末尾,再次调用不会读取到任何的内容

2.4 打开文件的方式

  • open 函数默认以 只读方式 打开文件,并且返回文件对象

语法如下:

f = open("文件名", "访问方式")
访问方式 说明
r 只读方式打开文件。文件的指针将会放在文件的开头,这是默认模式。如果文件不存在,抛出异常
w 只写方式打开文件。如果文件存在会被覆盖。如果文件不存在,创建新文件
a 追加方式打开文件。如果该文件已存在,文件指针将会放在文件的结尾。如果文件不存在,创建新文件进行写入
r+ 读写方式打开文件。文件的指针将会放在文件的开头。如果文件不存在,抛出异常
w+ 读写方式打开文件。如果文件存在会被覆盖。如果文件不存在,创建新文件
a+ 读写方式打开文件。如果该文件已存在,文件指针将会放在文件的结尾。如果文件不存在,创建新文件进行写入

提示

  • 频繁的移动文件指针,会影响文件的读写效率,开发中更多的时候会以 只读只写 的方式来操作文件

写入文件示例

# 打开文件
f = open("README", "w")

f.write("hello python!\n")
f.write("今天天气真好")

# 关闭文件
f.close()

2.5 按行读取文件内容

  • read 方法默认会把文件的 所有内容 一次性读取到内存
  • 如果文件太大,对内存的占用会非常严重

readline 方法

  • readline 方法可以一次读取一行内容
  • 方法执行后,会把 文件指针 移动到下一行,准备再次读取

读取大文件的正确姿势

# 打开文件
file = open("README")

while True:
# 读取一行内容
text = file.readline()

# 判断是否读到内容
if not text:
break

# 每读取一行的末尾已经有了一个 `\n`
print(text, end="")

# 关闭文件
file.close()

2.6 文件读写案例 —— 复制文件

目标

用代码的方式,来实现文件复制过程

025_复制文件-w441

小文件复制

  • 打开一个已有文件,读取完整内容,并写入到另外一个文件
# 1. 打开文件
file_read = open("README")
file_write = open("README[复件]", "w")

# 2. 读取并写入文件
text = file_read.read()
file_write.write(text)

# 3. 关闭文件
file_read.close()
file_write.close()

大文件复制

  • 打开一个已有文件,逐行读取内容,并顺序写入到另外一个文件
# 1. 打开文件
file_read = open("README")
file_write = open("README[复件]", "w")

# 2. 读取并写入文件
while True:
# 每次读取一行
text = file_read.readline()

# 判断是否读取到内容
if not text:
break

file_write.write(text)

# 3. 关闭文件
file_read.close()
file_write.close()

03. 文件/目录的常用管理操作

  • 终端 / 文件浏览器、 中可以执行常规的 文件 / 目录 管理操作,例如:
    • 创建、重命名、删除、改变路径、查看目录内容、……
  • Python 中,如果希望通过程序实现上述功能,需要导入 os 模块

文件操作

序号 方法名 说明 示例
01 rename 重命名文件 os.rename(源文件名, 目标文件名)
02 remove 删除文件 os.remove(文件名)

目录操作

序号 方法名 说明 示例
01 listdir 目录列表 os.listdir(目录名)
02 mkdir 创建目录 os.mkdir(目录名)
03 rmdir 删除目录 os.rmdir(目录名)
04 getcwd 获取当前目录 os.getcwd()
05 chdir 修改工作目录 os.chdir(目标目录)
06 path.isdir 判断是否是文件 os.path.isdir(文件路径)

提示:文件或者目录操作都支持 相对路径绝对路径

04. 文本文件的编码格式(科普)

  • 文本文件存储的内容是基于 字符编码 的文件,常见的编码有 ASCII 编码,UNICODE 编码等

Python 2.x 默认使用 ASCII 编码格式
Python 3.x 默认使用 UTF-8 编码格式

4.1 ASCII 编码和 UNICODE 编码

ASCII 编码

  • 计算机中只有 256ASCII 字符
  • 一个 ASCII 在内存中占用 1 个字节 的空间
    • 80/1 的排列组合方式一共有 256 种,也就是 2 ** 8

001_ASCII编码表1

UTF-8 编码格式

  • 计算机中使用 1~6 个字节 来表示一个 UTF-8 字符,涵盖了 地球上几乎所有地区的文字
  • 大多数汉字会使用 3 个字节 表示
  • UTF-8UNICODE 编码的一种编码格式

4.2 Ptyhon 2.x 中如何使用中文

Python 2.x 默认使用 ASCII 编码格式
Python 3.x 默认使用 UTF-8 编码格式

  • 在 Python 2.x 文件的 第一行 增加以下代码,解释器会以 utf-8 编码来处理 python 文件
# *-* coding:utf8 *-*

这方式是官方推荐使用的!

  • 也可以使用
# coding=utf8

unicode 字符串

  • Python 2.x 中,即使指定了文件使用 UTF-8 的编码格式,但是在遍历字符串时,仍然会 以字节为单位遍历 字符串
  • 要能够 正确的遍历字符串,在定义字符串时,需要 在字符串的引号前,增加一个小写字母 u,告诉解释器这是一个 unicode 字符串(使用 UTF-8 编码格式的字符串)
# *-* coding:utf8 *-*

# 在字符串前,增加一个 `u` 表示这个字符串是一个 utf8 字符串
hello_str = u"你好世界"

print(hello_str)

for c in hello_str:
print(c)

eval 函数

eval() 函数十分强大 —— 将字符串 当成 有效的表达式 来求值 并 返回计算结果

# 基本的数学计算
In [1]: eval("1 + 1")
Out[1]: 2

# 字符串重复
In [2]: eval("'*' * 10")
Out[2]: '**********'

# 将字符串转换成列表
In [3]: type(eval("[1, 2, 3, 4, 5]"))
Out[3]: list

# 将字符串转换成字典
In [4]: type(eval("{'name': 'xiaoming', 'age': 18}"))
Out[4]: dict

案例 - 计算器

需求

  1. 提示用户输入一个 加减乘除混合运算
  2. 返回计算结果
input_str = input("请输入一个算术题:")

print(eval(input_str))

不要滥用 eval

在开发时千万不要使用 eval 直接转换 input 的结果

__import__('os').system('ls')
  • 等价代码
import os

os.system("终端命令")
  • 执行成功,返回 0
  • 执行失败,返回错误信息


–项目实战篇–

项目实战 —— 飞机大战

目标

  • 强化 面向对象 程序设计
  • 体验使用 pygame 模块进行 游戏开发

实战步骤

  1. pygame 快速体验
  2. 飞机大战 实战

确认模块 —— pygame

  • pygame 就是一个 Python 模块,专为电子游戏设计
  • 官方网站:https://www.pygame.org/
    • 提示:要学习第三方模块,通常最好的参考资料就在官方网站
网站栏目 内容
GettingStarted 在各平台安装模块的说明
Docs pygame 模块所有 子类 的参考手册

安装 pygame

$ sudo pip3 install pygame

验证安装

$ python3 -m pygame.examples.aliens

pygame 快速入门

目标

  1. 项目准备
  2. 使用 pygame 创建图形窗口
  3. 理解 图像 并实现图像绘制
  4. 理解 游戏循环游戏时钟
  5. 理解 精灵精灵组

项目准备

  1. 新建 飞机大战 项目
  2. 新建一个 hm_01_pygame入门.py
  3. 导入 游戏素材图片

游戏的第一印象

  • 把一些 静止的图像 绘制到 游戏窗口
  • 根据 用户的交互 或其他情况,移动 这些图像,产生动画效果
  • 根据 图像之间 是否发生重叠,判断 敌机是否被摧毁 等其他情况

01. 使用 pygame 创建图形窗口

小节目标

  1. 游戏的初始化和退出
  2. 理解游戏中的坐标系
  3. 创建游戏主窗口
  4. 简单的游戏循环

可以将图片素材 绘制游戏的窗口 上,开发游戏之前需要先知道 如何建立游戏窗口

1.1 游戏的初始化和退出

  • 要使用 pygame 提供的所有功能之前,需要调用 init 方法
  • 在游戏结束前需要调用一下 quit 方法
方法 说明
pygame.init() 导入并初始化所有 pygame 模块,使用其他模块之前,必须先调用 init 方法
pygame.quit() 卸载所有 pygame 模块,在游戏结束之前调用!

001_pygame的init和quit-w254

import pygame

pygame.init()

# 游戏代码...

pygame.quit()

1.2 理解游戏中的坐标系

  • 坐标系
    • 原点左上角 (0, 0)
    • x 轴 水平方向向 ,逐渐增加
    • y 轴 垂直方向向 ,逐渐增加

002_游戏窗口和坐标系-w300

  • 在游戏中,所有可见的元素 都是以 矩形区域 来描述位置的

    • 要描述一个矩形区域有四个要素:(x, y) (width, height)
  • pygame 专门提供了一个类 pygame.Rect 用于描述 矩形区域

Rect(x, y, width, height) -> Rect

003_pygame.Rect-w382

提示

  • pygame.Rect 是一个比较特殊的类,内部只是封装了一些数字计算
  • 不执行 pygame.init() 方法同样能够直接使用

案例演练

需求

  1. 定义 hero_rect 矩形描述 英雄的位置和大小
  2. 输出英雄的 坐标原点xy
  3. 输出英雄的 尺寸宽度高度
hero_rect = pygame.Rect(100, 500, 120, 126)

print("坐标原点 %d %d" % (hero_rect.x, hero_rect.y))
print("英雄大小 %d %d" % (hero_rect.width, hero_rect.height))
# size 属性会返回矩形区域的 (宽, 高) 元组
print("英雄大小 %d %d" % hero_rect.size)

1.3 创建游戏主窗口

  • pygame 专门提供了一个 模块 pygame.display 用于创建、管理 游戏窗口
方法 说明
pygame.display.set_mode() 初始化游戏显示窗口
pygame.display.update() 刷新屏幕内容显示,稍后使用

set_mode 方法

set_mode(resolution=(0,0), flags=0, depth=0) -> Surface
  • 作用 —— 创建游戏显示窗口

  • 参数

    • resolution 指定屏幕的 ,默认创建的窗口大小和屏幕大小一致
    • flags 参数指定屏幕的附加选项,例如是否全屏等等,默认不需要传递
    • depth 参数表示颜色的位数,默认自动匹配
  • 返回值

    • 暂时 可以理解为 游戏的屏幕游戏的元素 都需要被绘制到 游戏的屏幕
  • 注意:必须使用变量记录 set_mode 方法的返回结果!因为:后续所有的图像绘制都基于这个返回结果

# 创建游戏主窗口
screen = pygame.display.set_mode((480, 700))

1.4 简单的游戏循环

  • 为了做到游戏程序启动后,不会立即退出,通常会在游戏程序中增加一个 游戏循环
  • 所谓 游戏循环 就是一个 无限循环
  • 创建游戏窗口 代码下方,增加一个无限循环
    • 注意:游戏窗口不需要重复创建
# 创建游戏主窗口
screen = pygame.display.set_mode((480, 700))

# 游戏循环
while True:
pass

02. 理解 图像 并实现图像绘制

  • 在游戏中,能够看到的 游戏元素 大多都是 图像
    • 图像文件 初始是保存在磁盘上的,如果需要使用,第一步 就需要 被加载到内存
  • 要在屏幕上 看到某一个图像的内容,需要按照三个步骤:
    1. 使用 pygame.image.load() 加载图像的数据
    2. 使用 游戏屏幕 对象,调用 blit 方法 将图像绘制到指定位置
    3. 调用 pygame.display.update() 方法更新整个屏幕的显示

004_加载和显示图像-w841

提示:要想在屏幕上看到绘制的结果,就一定要调用 pygame.display.update() 方法

代码演练 I —— 绘制背景图像

需求

  1. 加载 background.png 创建背景
  2. 背景 绘制在屏幕的 (0, 0) 位置
  3. 调用屏幕更新显示背景图像
# 绘制背景图像
# 1> 加载图像
bg = pygame.image.load("./images/background.png")

# 2> 绘制在屏幕
screen.blit(bg, (0, 0))

# 3> 更新显示
pygame.display.update()

代码演练 II —— 绘制英雄图像

需求

  1. 加载 me1.png 创建英雄飞机
  2. 英雄飞机 绘制在屏幕的 (200, 500) 位置
  3. 调用屏幕更新显示飞机图像
# 1> 加载图像
hero = pygame.image.load("./images/me1.png")

# 2> 绘制在屏幕
screen.blit(hero, (200, 500))

# 3> 更新显示
pygame.display.update()

透明图像

  • png 格式的图像是支持 透明
  • 在绘制图像时,透明区域 不会显示任何内容
  • 但是如果下方已经有内容,会 透过 透明区域 显示出来

理解 update() 方法的作用

可以在 screen 对象完成 所有 blit 方法之后,统一调用一次 display.update 方法,同样可以在屏幕上 看到最终的绘制结果

  • 使用 display.set_mode() 创建的 screen 对象 是一个 内存中的屏幕数据对象
    • 可以理解成是 油画画布
  • screen.blit 方法可以在 画布 上绘制很多 图像
    • 例如:英雄敌机子弹
    • 这些图像 有可能 会彼此 重叠或者覆盖
  • display.update() 会将 画布最终结果 绘制在屏幕上,这样可以 提高屏幕绘制效率增加游戏的流畅度

案例调整

# 绘制背景图像
# 1> 加载图像
bg = pygame.image.load("./images/background.png")

# 2> 绘制在屏幕
screen.blit(bg, (0, 0))

# 绘制英雄图像
# 1> 加载图像
hero = pygame.image.load("./images/me1.png")

# 2> 绘制在屏幕
screen.blit(hero, (200, 500))

# 3> 更新显示 - update 方法会把之前所有绘制的结果,一次性更新到屏幕窗口上
pygame.display.update()

03. 理解 游戏循环游戏时钟

现在 英雄飞机 已经被绘制到屏幕上了,怎么能够让飞机移动呢

3.1 游戏中的动画实现原理

  • 电影 的原理类似,游戏中的动画效果,本质上是 快速 的在屏幕上绘制 图像
    • 电影是将多张 静止的电影胶片 连续、快速的播放,产生连贯的视觉效果!
  • 一般在电脑上 每秒绘制 60 次,就能够达到非常 连续 高品质 的动画效果
    • 每次绘制的结果被称为 帧 Frame

手翻书动画
猫惊讶

3.2 游戏循环

游戏的两个组成部分

游戏循环的开始 就意味着 游戏的正式开始

005_游戏主模块-w600

游戏循环的作用

  1. 保证游戏 不会直接退出
  2. 变化图像位置 —— 动画效果
    • 每隔 1 / 60 秒 移动一下所有图像的位置
    • 调用 pygame.display.update() 更新屏幕显示
  3. 检测用户交互 —— 按键、鼠标等…

3.3 游戏时钟

  • pygame 专门提供了一个类 pygame.time.Clock 可以非常方便的设置屏幕绘制速度 —— 刷新帧率
  • 要使用 时钟对象 需要两步:
    • 1)在 游戏初始化 创建一个 时钟对象
    • 2)在 游戏循环 中让时钟对象调用 tick(帧率) 方法
  • tick 方法会根据 上次被调用的时间,自动设置 游戏循环 中的延时
# 3. 创建游戏时钟对象
clock = pygame.time.Clock()
i = 0

# 游戏循环
while True:

# 设置屏幕刷新帧率
clock.tick(60)

print(i)
i += 1

3.4 英雄的简单动画实现

需求

  1. 游戏初始化 定义一个 pygame.Rect 的变量记录英雄的初始位置
  2. 游戏循环 中每次让 英雄y - 1 —— 向上移动
  3. y <= 0 将英雄移动到屏幕的底部

提示:

  • 每一次调用 update() 方法之前,需要把 所有的游戏图像都重新绘制一遍
  • 而且应该 最先 重新绘制 背景图像
# 4. 定义英雄的初始位置
hero_rect = pygame.Rect(150, 500, 102, 126)

while True:

# 可以指定循环体内部的代码执行的频率
clock.tick(60)

# 更新英雄位置
hero_rect.y -= 1

# 如果移出屏幕,则将英雄的顶部移动到屏幕底部
if hero_rect.y <= 0:
hero_rect.y = 700

# 绘制背景图片
screen.blit(bg, (0, 0))
# 绘制英雄图像
screen.blit(hero, hero_rect)

# 更新显示
pygame.display.update()

作业

  1. 英雄向上飞行,当 英雄完全从上方飞出屏幕后
  2. 将飞机移动到屏幕的底部
if hero_rect.y + hero_rect.height <= 0:
hero_rect.y = 700

提示

  • Rect 的属性 bottom = y + height
if hero_rect.bottom <= 0:
hero_rect.y = 700

3.5 在游戏循环中 监听 事件

事件 event

  • 就是游戏启动后,用户针对游戏所做的操作
  • 例如:点击关闭按钮点击鼠标按下键盘

监听

  • 游戏循环 中,判断用户 具体的操作

只有 捕获 到用户具体的操作,才能有针对性的做出响应

代码实现

  • pygame 中通过 pygame.event.get() 可以获得 用户当前所做动作事件列表
    • 用户可以同一时间做很多事情
  • 提示:这段代码非常的固定,几乎所有的 pygame 游戏都 大同小异
# 游戏循环
while True:

# 设置屏幕刷新帧率
clock.tick(60)

# 事件监听
for event in pygame.event.get():

# 判断用户是否点击了关闭按钮
if event.type == pygame.QUIT:
print("退出游戏...")

pygame.quit()

# 直接退出系统
exit()

04. 理解 精灵精灵组

4.1 精灵 和 精灵组

  • 在刚刚完成的案例中,图像加载位置变化绘制图像 都需要程序员编写代码分别处理
  • 为了简化开发步骤,pygame 提供了两个类
    • pygame.sprite.Sprite —— 存储 图像数据 image位置 rect对象
    • pygame.sprite.Group

006_pygame.Sprite

精灵

  • 在游戏开发中,通常把 显示图像的对象 叫做精灵 Sprite

  • 精灵 需要 有 两个重要的属性

    • image 要显示的图像
    • rect 图像要显示在屏幕的位置
  • 默认的 update() 方法什么事情也没做

    • 子类可以重写此方法,在每次刷新屏幕时,更新精灵位置
  • 注意pygame.sprite.Sprite 并没有提供 imagerect 两个属性

    • 需要程序员从 pygame.sprite.Sprite 派生子类
    • 并在 子类初始化方法 中,设置 imagerect 属性

精灵组

  • 一个 精灵组 可以包含多个 精灵 对象
  • 调用 精灵组 对象的 update() 方法
    • 可以 自动 调用 组内每一个精灵update() 方法
  • 调用 精灵组 对象的 draw(屏幕对象) 方法
    • 可以将 组内每一个精灵image 绘制在 rect 位置
Group(*sprites) -> Group

注意:仍然需要调用 pygame.display.update() 才能在屏幕看到最终结果

4.2 派生精灵子类

  1. 新建 plane_sprites.py 文件
  2. 定义 GameSprite 继承自 pygame.sprite.Sprite

注意

  • 如果一个类的 父类 不是 object
  • 在重写 初始化方法 时,一定要super() 一下父类的 __init__ 方法
  • 保证父类中实现的 __init__ 代码能够被正常执行

007_GameSprite-w398

属性

  • image 精灵图像,使用 image_name 加载
  • rect 精灵大小,默认使用图像大小
  • speed 精灵移动速度,默认为 1

方法

  • update 每次更新屏幕时在游戏循环内调用
    • 让精灵的 self.rect.y += self.speed

提示

  • imageget_rect() 方法,可以返回 pygame.Rect(0, 0, 图像宽, 图像高) 的对象
import pygame


class GameSprite(pygame.sprite.Sprite):
"""游戏精灵基类"""

def __init__(self, image_name, speed=1):

# 调用父类的初始化方法
super().__init__()

# 加载图像
self.image = pygame.image.load(image_name)
# 设置尺寸
self.rect = self.image.get_rect()
# 记录速度
self.speed = speed

def update(self, *args):

# 默认在垂直方向移动
self.rect.y += self.speed

4.3 使用 游戏精灵 和 精灵组 创建敌机

需求

  • 使用刚刚派生的 游戏精灵精灵组 创建 敌机 并且实现敌机动画

步骤

  1. 使用 from 导入 plane_sprites 模块
    • from 导入的模块可以 直接使用
    • import 导入的模块需要通过 模块名. 来使用
  2. 游戏初始化 创建 精灵对象精灵组对象
  3. 游戏循环中精灵组 分别调用 update()draw(screen) 方法

职责

  • 精灵
    • 封装 图像 image位置 rect速度 speed
    • 提供 update() 方法,根据游戏需求,更新位置 rect
  • 精灵组
    • 包含 多个 精灵对象
    • update 方法,让精灵组中的所有精灵调用 update 方法更新位置
    • draw(screen) 方法,在 screen 上绘制精灵组中的所有精灵

实现步骤

    1. 导入 plane_sprites 模块
from plane_sprites import *
    1. 修改初始化部分代码
# 创建敌机精灵和精灵组
enemy1 = GameSprite("./images/enemy1.png")
enemy2 = GameSprite("./images/enemy1.png", 2)
enemy2.rect.x = 200
enemy_group = pygame.sprite.Group(enemy1, enemy2)
    1. 修改游戏循环部分代码
# 让敌机组调用 update 和 draw 方法
enemy_group.update()
enemy_group.draw(screen)

# 更新屏幕显示
pygame.display.update()

游戏框架搭建

目标 —— 使用 面相对象 设计 飞机大战游戏类

目标

  • 明确主程序职责
  • 实现主程序类
  • 准备游戏精灵组

01. 明确主程序职责

  • 回顾 快速入门案例,一个游戏主程序的 职责 可以分为两个部分:
    • 游戏初始化
    • 游戏循环
  • 根据明确的职责,设计 PlaneGame 类如下:

009_游戏主程序-w600

提示 根据 职责 封装私有方法,可以避免某一个方法的代码写得太过冗长

如果某一个方法编写的太长,既不好阅读,也不好维护!

  • 游戏初始化 —— __init__() 会调用以下方法:
方法 职责
__create_sprites(self) 创建所有精灵和精灵组
  • 游戏循环 —— start_game() 会调用以下方法:
方法 职责
__event_handler(self) 事件监听
__check_collide(self) 碰撞检测 —— 子弹销毁敌机、敌机撞毁英雄
__update_sprites(self) 精灵组更新和绘制
__game_over() 游戏结束

02. 实现飞机大战主游戏类

2.1 明确文件职责

011_程序文件职责-w479

  • plane_main
    1. 封装 主游戏类
    2. 创建 游戏对象
    3. 启动游戏
  • plane_sprites
    • 封装游戏中 所有 需要使用的 精灵子类
    • 提供游戏的 相关工具

代码实现

  • 新建 plane_main.py 文件,并且设置为可执行
  • 编写 基础代码
import pygame
from plane_sprites import *


class PlaneGame(object):
"""飞机大战主游戏"""

def __init__(self):
print("游戏初始化")

def start_game(self):
print("开始游戏...")


if __name__ == '__main__':
# 创建游戏对象
game = PlaneGame()

# 开始游戏
game.start_game()

2.3 游戏初始化部分

  • 完成 __init__() 代码如下:
def __init__(self):
print("游戏初始化")

# 1. 创建游戏的窗口
self.screen = pygame.display.set_mode((480, 700))
# 2. 创建游戏的时钟
self.clock = pygame.time.Clock()
# 3. 调用私有方法,精灵和精灵组的创建
self.__create_sprites()

def __create_sprites(self):
pass

使用 常量 代替固定的数值

  • 常量 —— 不变化的量
  • 变量 —— 可以变化的量

应用场景

  • 在开发时,可能会需要使用 固定的数值,例如 屏幕的高度700
  • 这个时候,建议 不要 直接使用固定数值,而应该使用 常量
  • 在开发时,为了保证代码的可维护性,尽量不要使用 魔法数字

常量的定义

  • 定义 常量 和 定义 变量 的语法完全一样,都是使用 赋值语句
  • 常量命名 应该 所有字母都使用大写单词与单词之间使用下划线连接

常量的好处

  • 阅读代码时,通过 常量名 见名之意,不需要猜测数字的含义
  • 如果需要 调整值,只需要 修改常量定义 就可以实现 统一修改

提示:Python 中并没有真正意义的常量,只是通过命名的约定 —— 所有字母都是大写的就是常量,开发时不要轻易的修改!

代码调整

  • plane_sprites.py 中增加常量定义
import pygame

# 游戏屏幕大小
SCREEN_RECT = pygame.Rect(0, 0, 480, 700)
  • 修改 plane_main.py 中的窗口大小
self.screen = pygame.display.set_mode(SCREEN_RECT.size)

2.4 游戏循环部分

  • 完成 start_game() 基础代码如下:
def start_game(self):
"""开始游戏"""

print("开始游戏...")

while True:

# 1. 设置刷新帧率
self.clock.tick(60)

# 2. 事件监听
self.__event_handler()

# 3. 碰撞检测
self.__check_collide()

# 4. 更新精灵组
self.__update_sprites()

# 5. 更新屏幕显示
pygame.display.update()

def __event_handler(self):
"""事件监听"""

for event in pygame.event.get():

if event.type == pygame.QUIT:
PlaneGame.__game_over()

def __check_collide(self):
"""碰撞检测"""
pass

def __update_sprites(self):
"""更新精灵组"""
pass

@staticmethod
def __game_over():
"""游戏结束"""

print("游戏结束")
pygame.quit()
exit()

03. 准备游戏精灵组

3.1 确定精灵组

010_精灵组确定-w600

3.2 代码实现

  • 创建精灵组方法
def __create_sprites(self):
"""创建精灵组"""

# 背景组
self.back_group = pygame.sprite.Group()
# 敌机组
self.enemy_group = pygame.sprite.Group()
# 英雄组
self.hero_group = pygame.sprite.Group()

  • 更新精灵组方法
def __update_sprites(self):
"""更新精灵组"""

for group in [self.back_group, self.enemy_group, self.hero_group]:

group.update()
group.draw(self.screen)

游戏背景

目标

  • 背景交替滚动的思路确定
  • 显示游戏背景

01. 背景交替滚动的思路确定

运行 备课代码观察 背景图像的显示效果:

  • 游戏启动后,背景图像连续不断地 向下方 移动
  • 视觉上 产生英雄的飞机不断向上方飞行的 错觉 —— 在很多跑酷类游戏中常用的套路
    • 游戏的背景 不断变化
    • 游戏的主角 位置保持不变

1.1 实现思路分析

013_背景图片交替滚动-w640

解决办法

  1. 创建两张背景图像精灵
    • 1完全和屏幕重合
    • 2 张在 屏幕的正上方
  2. 两张图像 一起向下方运动
    • self.rect.y += self.speed
  3. 任意背景精灵rect.y >= 屏幕的高度 说明已经 移动到屏幕下方
  4. 移动到屏幕下方的这张图像 设置到 屏幕的正上方
    • rect.y = -rect.height

1.2 设计背景类

012_派生Background子类-w398

  • 初始化方法
    • 直接指定 背景图片
    • is_alt 判断是否是另一张图像
      • False 表示 第一张图像,需要与屏幕重合
      • True 表示 另一张图像,在屏幕的正上方
  • update() 方法
    • 判断 是否移动出屏幕,如果是,将图像设置到 屏幕的正上方,从而实现 交替滚动

继承 如果父类提供的方法,不能满足子类的需求:

  • 派生一个子类
  • 在子类中针对特有的需求,重写父类方法,并且进行扩展

02. 显示游戏背景

2.1 背景精灵的基本实现

  • plane_sprites 新建 Background 继承自 GameSprite
class Background(GameSprite):
"""游戏背景精灵"""

def update(self):

# 1. 调用父类的方法实现
super().update()

# 2. 判断是否移出屏幕,如果移出屏幕,将图像设置到屏幕的上方
if self.rect.y >= SCREEN_RECT.height:
self.rect.y = -self.rect.height

2.2 在 plane_main.py 中显示背景精灵

  1. __create_sprites 方法中创建 精灵精灵组
  2. __update_sprites 方法中,让 精灵组 调用 update()draw() 方法

__create_sprites 方法

def __create_sprites(self):

# 创建背景精灵和精灵组
bg1 = Background("./images/background.png")
bg2 = Background("./images/background.png")
bg2.rect.y = -bg2.rect.height

self.back_group = pygame.sprite.Group(bg1, bg2)

__update_sprites 方法

def __update_sprites(self):

self.back_group.update()
self.back_group.draw(self.screen)

2.3 利用初始化方法,简化背景精灵创建

思考 —— 上一小结完成的代码存在什么样的问题?能否简化?

  • 在主程序中,创建的两个背景精灵传入了相同的图像文件路径
  • 创建 第二个 背景精灵 时,在主程序中,设置背景精灵的图像位置

思考 —— 精灵 初始位置 的设置,应该 由主程序负责?还是 由精灵自己负责

答案 —— 由精灵自己负责

  • 根据面向对象设计原则,应该将对象的职责,封装到类的代码内部
  • 尽量简化程序调用一方的代码调用

012_派生Background子类-w398

  • 初始化方法
    • 直接指定 背景图片
    • is_alt 判断是否是另一张图像
      • False 表示 第一张图像,需要与屏幕重合
      • True 表示 另一张图像,在屏幕的正上方

plane_sprites.py 中实现 Background初始化方法

def __init__(self, is_alt=False):

image_name = "./images/background.png"
super().__init__(image_name)

# 判断是否交替图片,如果是,将图片设置到屏幕顶部
if is_alt:
self.rect.y = -self.rect.height
  • 修改 plane_main__create_sprites 方法
# 创建背景精灵和精灵组
bg1 = Background()
bg2 = Background(True)

self.back_group = pygame.sprite.Group(bg1, bg2)

英雄登场

目标

  • 设计 英雄子弹
  • 使用 pygame.key.get_pressed() 移动英雄
  • 发射子弹

01. 设计 英雄子弹

英雄需求

  1. 游戏启动后,英雄 出现在屏幕的 水平中间 位置,距离 屏幕底部 120 像素
  2. 英雄 每隔 0.5 秒发射一次子弹,每次 连发三枚子弹
  3. 英雄 默认不会移动,需要通过 左/右 方向键,控制 英雄 在水平方向移动

017_英雄位置-w480

子弹需求

  1. 子弹英雄 的正上方发射 沿直线上方 飞行
  2. 飞出屏幕后,需要从 精灵组 中删除

016_派生英雄和子弹子类

Hero —— 英雄

  • 初始化方法
    • 指定 英雄图片
    • 初始速度 = 0 —— 英雄默认静止不动
    • 定义 bullets 子弹精灵组 保存子弹精灵
  • 重写 update() 方法
    • 英雄需要 水平移动
    • 并且需要保证不能 移出屏幕
  • 增加 bullets 属性,记录所有 子弹精灵
  • 增加 fire 方法,用于发射子弹

Bullet —— 子弹

  • 初始化方法
    • 指定 子弹图片
    • 初始速度 = -2 —— 子弹需要向上方飞行
  • 重写 update() 方法
    • 判断 是否飞出屏幕,如果是,从 精灵组 删除

02. 创建英雄

2.1 准备英雄类

  • plane_sprites 新建 Hero
  • 重写 初始化方法,直接指定 图片名称,并且将初始速度设置为 0
  • 设置 英雄的初始位置

003_pygame.Rect-w382

  • centerx = x + 0.5 * width
  • centery = y + 0.5 * height
  • bottom = y + height

017_英雄位置-w480

class Hero(GameSprite):
"""英雄精灵"""

def __init__(self):

super().__init__("./images/me1.png", 0)

# 设置初始位置
self.rect.centerx = SCREEN_RECT.centerx
self.rect.bottom = SCREEN_RECT.bottom - 120

2.2 绘制英雄

  1. __create_sprites,添加 英雄精灵英雄精灵组
    • 后续要针对 英雄碰撞检测 以及 发射子弹
    • 所以 英雄 需要 单独定义成属性
  2. __update_sprites,让 英雄精灵组 调用 updatedraw 方法

代码实现

  • 修改 __create_sprites 方法如下:
# 英雄组
self.hero = Hero()
self.hero_group = pygame.sprite.Group(self.hero)
  • 修改 __update_sprites 方法如下:
self.hero_group.update()
self.hero_group.draw(self.screen)

03. 移动英雄位置

pygame 中针对 键盘按键的捕获,有 两种 方式

  • 第一种方式 判断 event.type == pygame.KEYDOWN
  • 第二种方式
    1. 首先使用 pygame.key.get_pressed() 返回 所有按键元组
    2. 通过 键盘常量,判断元组中 某一个键是否被按下 —— 如果被按下,对应数值为 1

提问 这两种方式之间有什么区别呢?

  • 第一种方式
elif event.type == pygame.KEYDOWN and event.key == pygame.K_RIGHT:
print("向右移动...")
  • 第二种方式
# 返回所有按键的元组,如果某个键被按下,对应的值会是1
keys_pressed = pygame.key.get_pressed()
# 判断是否按下了方向键
if keys_pressed[pygame.K_RIGHT]:
print("向右移动...")

结论

  • 第一种方式 event.type 用户 必须要抬起按键 才算一次 按键事件操作灵活性会大打折扣
  • 第二种方式 用户可以按住方向键不放,就能够实现持续向某一个方向移动了,操作灵活性更好

3.1 移动英雄位置

演练步骤

  1. Hero 类中重写 update 方法
    • 速度 speed英雄 rect.x 进行叠加
    • 不需要调用父类方法 —— 父类方法只是实现了单纯的垂直运动
  2. __event_handler 方法中根据 左右方向键 设置英雄的 速度
    • 向右 => speed = 2
    • 向左 => speed = -2
    • 其他 => speed = 0

代码演练

  • Hero 类,重写 update() 方法,根据速度水平移动 英雄的飞机
def update(self):

# 飞机水平移动
self.rect.x += self.speed
  • 调整键盘按键代码
# 获取用户按键
keys_pressed = pygame.key.get_pressed()

if keys_pressed[pygame.K_RIGHT]:
self.hero.speed = 2
elif keys_pressed[pygame.K_LEFT]:
self.hero.speed = -2
else:
self.hero.speed = 0

3.2 控制英雄运动边界

  • Hero 类的 update() 方法判断 英雄 是否超出 屏幕边界

003_pygame.Rect-w382

  • right = x + width 利用 right 属性可以非常容易的针对右侧设置精灵位置

017_英雄位置II-w408

def update(self):

# 飞机水平移动
self.rect.x += self.speed

# 判断屏幕边界
if self.rect.left < 0:
self.rect.left = 0
if self.rect.right > SCREEN_RECT.right:
self.rect.right = SCREEN_RECT.right

04. 发射子弹

需求回顾 —— 英雄需求

  1. 游戏启动后,英雄 出现在屏幕的 水平中间 位置,距离 屏幕底部 120 像素
  2. 英雄 每隔 0.5 秒发射一次子弹,每次 连发三枚子弹
  3. 英雄 默认不会移动,需要通过 左/右 方向键,控制 英雄 在水平方向移动

4.1 添加发射子弹事件

pygame定时器 使用套路非常固定:

  1. 定义 定时器常量 —— eventid
  2. 初始化方法 中,调用 set_timer 方法 设置定时器事件
  3. 游戏循环 中,监听定时器事件

代码实现

  • Hero 中定义 fire 方法
def fire(self):
print("发射子弹...")
  • plane_main.py 的顶部定义 发射子弹 事件常量
# 英雄发射子弹事件
HERO_FIRE_EVENT = pygame.USEREVENT + 1
  • __init__ 方法末尾中添加 发射子弹 事件
# 每隔 0.5 秒发射一次子弹
pygame.time.set_timer(HERO_FIRE_EVENT, 500)
  • __event_handler 方法中让英雄发射子弹
elif event.type == HERO_FIRE_EVENT:
self.hero.fire()

4.2 定义子弹类

需求回顾 —— 子弹需求

  1. 子弹英雄 的正上方发射 沿直线上方 飞行
  2. 飞出屏幕后,需要从 精灵组 中删除

Bullet —— 子弹

  • 初始化方法
    • 指定 子弹图片
    • 初始速度 = -2 —— 子弹需要向上方飞行
  • 重写 update() 方法
    • 判断 是否飞出屏幕,如果是,从 精灵组 删除

定义子弹类

  • plane_sprites 新建 Bullet 继承自 GameSprite
  • 重写 初始化方法,直接指定 图片名称,并且设置 初始速度
  • 重写 update() 方法,判断子弹 飞出屏幕从精灵组删除
class Bullet(GameSprite):
"""子弹精灵"""

def __init__(self):

super().__init__("./images/bullet1.png", -2)

def update(self):

super().update()

# 判断是否超出屏幕,如果是,从精灵组删除
if self.rect.bottom < 0:
self.kill()

4.3 发射子弹

演练步骤

  1. Hero初始化方法 中创建 子弹精灵组 属性
  2. 修改 plane_main.py__update_sprites 方法,让 子弹精灵组 调用 updatedraw 方法
  3. 实现 fire() 方法
    • 创建子弹精灵
    • 设置初始位置 —— 在 英雄的正上方
    • 子弹 添加到精灵组

代码实现

  • 初始化方法
# 创建子弹的精灵组
self.bullets = pygame.sprite.Group()
  • 修改 fire() 方法
def fire(self):

# 1. 创建子弹精灵
bullet = Bullet()

# 2. 设置精灵的位置
bullet.rect.bottom = self.rect.y - 20
bullet.rect.centerx = self.rect.centerx

# 3. 将精灵添加到精灵组
self.bullets.add(bullet)

一次发射三枚子弹

017_英雄位置III-w559

  • 修改 fire() 方法,一次发射三枚子弹
def fire(self):

for i in (1, 2, 3):
# 1. 创建子弹精灵
bullet = Bullet()

# 2. 设置精灵的位置
bullet.rect.bottom = self.rect.y - i * 20
bullet.rect.centerx = self.rect.centerx

# 3. 将精灵添加到精灵组
self.bullets.add(bullet)

敌机出场

目标

  • 使用 定时器 添加敌机
  • 设计 Enemy

01. 使用定时器添加敌机

运行 备课代码观察 敌机的 出现规律

  1. 游戏启动后,每隔 1 秒出现一架敌机
  2. 每架敌机 向屏幕下方飞行,飞行 速度各不相同
  3. 每架敌机出现的 水平位置 也不尽相同
  4. 当敌机 从屏幕下方飞出,不会再飞回到屏幕中

1.1 定时器

  • pygame 中可以使用 pygame.time.set_timer() 来添加 定时器
  • 所谓 定时器,就是 每隔一段时间,去 执行一些动作
set_timer(eventid, milliseconds) -> None
  • set_timer 可以创建一个 事件
  • 可以在 游戏循环事件监听 方法中捕获到该事件
  • 第 1 个参数 事件代号 需要基于常量 pygame.USEREVENT 来指定
    • USEREVENT 是一个整数,再增加的事件可以使用 USEREVENT + 1 指定,依次类推…
  • 第 2 个参数是 事件触发 间隔的 毫秒值

定时器事件的监听

  • 通过 pygame.event.get() 可以获取当前时刻所有的 事件列表
  • 遍历列表 并且判断 event.type 是否等于 eventid,如果相等,表示 定时器事件 发生

1.2 定义并监听创建敌机的定时器事件

pygame定时器 使用套路非常固定:

  1. 定义 定时器常量 —— eventid
  2. 初始化方法 中,调用 set_timer 方法 设置定时器事件
  3. 游戏循环 中,监听定时器事件

1) 定义事件

  • plane_sprites.py 的顶部定义 事件常量
# 敌机的定时器事件常量
CREATE_ENEMY_EVENT = pygame.USEREVENT
  • PlaneGame初始化方法创建用户事件
# 4. 设置定时器事件 - 每秒创建一架敌机
pygame.time.set_timer(CREATE_ENEMY_EVENT, 1000)

2) 监听定时器事件

  • __event_handler 方法中增加以下代码:
def __event_handler(self):

for event in pygame.event.get():

# 判断是否退出游戏
if event.type == pygame.QUIT:
PlaneGame.__game_over()
elif event.type == CREATE_ENEMY_EVENT:
print("敌机出场...")

02. 设计 Enemy

  1. 游戏启动后,每隔 1 秒出现一架敌机
  2. 每架敌机 向屏幕下方飞行,飞行 速度各不相同
  3. 每架敌机出现的 水平位置 也不尽相同
  4. 当敌机 从屏幕下方飞出,不会再飞回到屏幕中

014_派生Enemy子类-w657

  • 初始化方法
    • 指定 敌机图片
    • 随机 敌机的 初始位置初始速度
  • 重写 update() 方法
    • 判断 是否飞出屏幕,如果是,从 精灵组 删除

2.1 敌机类的准备

  • plane_sprites 新建 Enemy 继承自 GameSprite
  • 重写 初始化方法,直接指定 图片名称
  • 暂时 不实现 随机速度随机位置 的指定
  • 重写 update 方法,判断是否飞出屏幕
class Enemy(GameSprite):
"""敌机精灵"""

def __init__(self):

# 1. 调用父类方法,创建敌机精灵,并且指定敌机的图像
super().__init__("./images/enemy1.png")

# 2. 设置敌机的随机初始速度

# 3. 设置敌机的随机初始位置

def update(self):

# 1. 调用父类方法,让敌机在垂直方向运动
super().update()

# 2. 判断是否飞出屏幕,如果是,需要将敌机从精灵组删除
if self.rect.y >= SCREEN_RECT.height:
print("敌机飞出屏幕...")

2.2 创建敌机

演练步骤

  1. __create_sprites,添加 敌机精灵组
    • 敌机是 定时被创建的,因此在初始化方法中,不需要创建敌机
  2. __event_handler,创建敌机,并且 添加到精灵组
    • 调用 精灵组add 方法可以 向精灵组添加精灵
  3. __update_sprites,让 敌机精灵组 调用 updatedraw 方法

006_pygame.SpriteII

演练代码

  • 修改 plane_main__create_sprites 方法
# 敌机组
self.enemy_group = pygame.sprite.Group()
  • 修改 plane_main__update_sprites 方法
self.enemy_group.update()
self.enemy_group.draw(self.screen)
  • 定时出现敌机
elif event.type == CREATE_ENEMY_EVENT:
self.enemy_group.add(Enemy())

2.3 随机敌机位置和速度

1) 导入模块

  • 在导入模块时,建议 按照以下顺序导入
1. 官方标准模块导入
2. 第三方模块导入
3. 应用程序模块导入
  • 修改 plane_sprites.py 增加 random 的导入
import random

2) 随机位置

015_飞机初始位置-w360

使用 pygame.Rect 提供的 bottom 属性,在指定敌机初始位置时,会比较方便

  • bottom = y + height
  • y = bottom - height

3) 代码实现

  • 修改 初始化方法,随机敌机出现 速度位置
def __init__(self):

# 1. 调用父类方法,创建敌机精灵,并且指定敌机的图像
super().__init__("./images/enemy1.png")

# 2. 设置敌机的随机初始速度 1 ~ 3
self.speed = random.randint(1, 3)

# 3. 设置敌机的随机初始位置
self.rect.bottom = 0

max_x = SCREEN_RECT.width - self.rect.width
self.rect.x = random.randint(0, max_x)

2.4 移出屏幕销毁敌机

  • 敌机移出屏幕之后,如果 没有撞到英雄,敌机的历史使命已经终结
  • 需要从 敌机组 删除,否则会造成 内存浪费

检测敌机被销毁

  • __del__ 内置方法会在对象被销毁前调用,在开发中,可以用于 判断对象是否被销毁
def __del__(self):
print("敌机挂了 %s" % self.rect)

代码实现

006_pygame.SpriteII

  • 判断敌机是否飞出屏幕,如果是,调用 kill() 方法从所有组中删除
def update(self):
super().update()

# 判断敌机是否移出屏幕
if self.rect.y >= SCREEN_RECT.height:
# 将精灵从所有组中删除
self.kill()

碰撞检测

目标

  • 了解碰撞检测方法
  • 碰撞实现

01. 了解碰撞检测方法

  • pygame 提供了 两个非常方便 的方法可以实现碰撞检测:

pygame.sprite.groupcollide()

  • 两个精灵组所有的精灵 的碰撞检测
groupcollide(group1, group2, dokill1, dokill2, collided = None) -> Sprite_dict
  • 如果将 dokill 设置为 True,则 发生碰撞的精灵将被自动移除
  • collided 参数是用于 计算碰撞的回调函数
    • 如果没有指定,则每个精灵必须有一个 rect 属性

pygame.sprite.spritecollide()

  • 判断 某个精灵指定精灵组 中的精灵的碰撞
spritecollide(sprite, group, dokill, collided = None) -> Sprite_list
  • 如果将 dokill 设置为 True,则 指定精灵组发生碰撞的精灵将被自动移除
  • collided 参数是用于 计算碰撞的回调函数
    • 如果没有指定,则每个精灵必须有一个 rect 属性
  • 返回 精灵组 中跟 精灵 发生碰撞的 精灵列表

02. 碰撞实现

def __check_collide(self):

# 1. 子弹摧毁敌机
pygame.sprite.groupcollide(self.hero.bullets, self.enemy_group, True, True)

# 2. 敌机撞毁英雄
enemies = pygame.sprite.spritecollide(self.hero, self.enemy_group, True)

# 判断列表时候有内容
if len(enemies) > 0:

# 让英雄牺牲
self.hero.kill()

# 结束游戏
PlaneGame.__game_over()